In the Trenches with IP Multicast

Greg Bell
LBLnet Services Group, LBNL

ESCC: February 6, 2003

Goals for this talk

- To tell the story of our "multicast meltdown"
- To describe a few insidious failure modes
- To summarize lessons learned
- To offer tips for faster troubleshooting
- Caveats:
 - This is not a traditional guide to debugging multicast
 - I'm describing a worst-case scenario
 - I have an operational perspective

A brief orientation

- LBLnet is a medium-sized LAN
 - >12,000 attached devices
 - >100 subnets
 - IP, IPX, Appletalk & DECnet
 - several remote sites
- Simple multicast topology
 - PIM sparse-dense, with MSDP for peering
- Major customer for multicast services:
 Access Grid Node

Timeline

- until 9/01: stability
- 9/01-7/02: sporadic trouble, with 3 internal and 4 external outages
- 8/02-9/02: meltdown
 - Frequent multicast outages
 - Symptoms: loss of PIM neighbor state, severe packet loss (both random and cyclic), unidirectional connectivity, late joins, MSDP anomalies, and more...
 - Furious debugging effort
 - Time required to sort it out = engineer-weeks
 - Eventually diagnosed at least 8 bugs on 5 platforms

The happy ending

- Return of stability on 10/7/02, when we diagnosed an intermittent CGMP bug
- No multicast failure within LBLnet since that date
 - (with one exception: the "SQL Slammer" worm tickled a Cisco MSDP bug, but the work-around was simple)

Contributing to the meltdown

- Heterogeneous network (4 router platforms)
- Many IOS versions (the result of bug fixes)
- During the Summer of 2002, there was a significant increase in
 - AG Node utilization
 - The profile and importance of AG Node meetings
 - Volume of multicast traffic
- New peering relationship with ESnet
- New border topology
- All of these factors put us at greater risk

- Lesson #1: multicast routing code is buggy
 - We discovered catastrophic bugs on 5 different platforms (a mixture of routers / switches):
 - Cisco 4500
 - Cisco 7513
 - Cisco 6509
 - Cisco 8540
 - Cisco 5500

How serious are the bugs?

- Extremely serious (not minor annoyances).
 Often, they affect router stability, not just multicast functionality
- From a major vendor's website:

Bug ID #CSCdx82485

Symptoms: Under rare circumstances, a router that is configured with Protocol-Independent Multicast (PIM) may pause indefinitely.

Workaround: Use a different Ethernet card, or avoid using PIM.

How serious are the bugs (cont)?

• We've seen all of the following symptoms:

- Router reboots when it encounters multicast traffic
- Normal PIM hello packets wedge an interface buffer, causing router to lose all PIM neighbor state
- Router becomes unstable and drops unicast traffic when normal IGMP packets (mtrace) wedge a backbone interface buffer
- Router spontaneously reboots when attempting to establish MSDP peering
- MSDP router doesn't advertise active local sources
- Switch running CGMP intermittently drops all multicast packets

- Lesson #2: the severity of these bugs suggests a flagrant lack of concern for quality assurance
 - If PIM neighbor state isn't verified, then what is?
 - Beware! OS versions recommended by a vendor for multicast bug-fix purposes may contain new (and even worse) bugs

- Lesson #3: stability can be achieved, but it may require considerable engineering resources
- Lesson #4: debugging a serious multicast problem may impair the stability of unicast routing
 - frequent OS upgrades
 - CPU-intensive debug commands
 - intrusive tests (process-switching of multicast)

- Lesson #5: your "problem" may be caused by 2 (or more) simultaneous bugs, in which case troubleshooting becomes much more difficult
 - One symptom masks another
 - It's not always obvious when you've eliminated a bug
- Lesson #6: your diagnostic tools may be flawed
 - mtrace destabilizes remote router
 - Some "show" commands have bugs (ie, sho ip mroute count)

Lessons learned, cont.

- Lesson #7: when multicast fails, it will fail at the worst possible moment
 - during a meeting in which network budgets are discussed
 - during a high-profile Earth Simulator conference
 - 2 minutes before the Lab Director arrives at the AG Node for a demonstration
- Not simply the result of bad luck; many bugs are load-dependent
- Lesson #7 leads to a special state of mind:
 Multicast Induced Paranoia (MIP)

Practical suggestions

Once multicast is stable, what can you do to accelerate the trouble-shooting process?

The key is rapid diagnosis

- Easier said than done, because symptoms are frequently misleading
 - Problems in the WAN can initially present as problems in the LAN, and vice-versa
 - Once your network has suffered from multicast trouble, all AG Node problems are likely to be blamed on multicast
 - OS and application bugs
 - Sound and video-card issues
 - Cabling problems
 - Operator error
- Holy grail = rapid fault isolation. But how to achieve that?

Practical suggestions

- Consider putting major multicast applications (AG Node, for example) on a dedicated subnet
 - A case of theoretical purity vs. operational urgency
 - Less likely that debugging multicast will adversely affect other users
- Eliminate IGMP-snooping / CGMP on this subnet
 - Fewer failure modes

Practical suggestions, cont.

- Install a completely redundant host on the AG Node subnet to help rule out systemrelated trouble
 - Laptop running PIG or inSORS software
- Create a clear troubleshooting protocol for AG Node operators
 - When & how do they hand off a problem?
- Install copper or fiber taps for monitoring multicast traffic
 - "show" commands may deceive
 - tcpdump is your friend
 - Easy to do in conjunction with Bro

Practical suggestions

- Use the multicast beacon, but use it wisely
 - We've found the AG beacon has too many hosts for effective troubleshooting in the LAN, but it's valuable for load testing
 - Consider joining the ESnet beacon on thorn.es.net (much smaller; DOE sites only)
- Develop a close working relationship with your service provider
 - We're fortunate in this respect; Mike O'Connor and Joe Burrescia have been outstanding
- Identify 1 or 2 multicast experts at your vendor's TAC, and open all multicast-related cases with them
 - Accept no substitutes!

Getting ahead of the curve

- Ideally we'd like to be much more proactive when it comes to multicast troubleshooting
- The dream: a multicast "early warning system"
 - Periodically polling routers, performing basic sanity checks on buffers, multicast routing tables, MSDP caches
 - Testing for the specific failure modes we've repeatedly encountered (inductive approach, grounded in operational experience)
- Funding is unclear, but we're currently implementing an "MSDP alarm" as proof of concept
 - Compare MSDP caches on two distant routers

A bigger question; conclusion

- What's to blame for the poor state of multicast code? (Send me your thoughts!)
 - Inherent complexity of the protocols?
 - Sloppy development & poor QA?
 - Lack of critical customer mass?
 - Lack of business case, on the vendor's part, for improving quality?
- Conclusion: We should try to influence these factors however we can
 - By contributing to IETF efforts
 - By holding vendors accountable
- In the mean time, we need to focus on
 - Mitigation (eliminate failure modes)
 - Cooperation (share strategies and information)

Thanks!

- Questions / comments
 - send to <u>GRBell@lbl.gov</u>

